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Many mechanical systems exhibit a surprising stabilization effect when subjected to high frequency vibra-
tions. The class of such systems includes, besides the well-known inverted pendulum [1], [2], more complex
systems such as particles with vibrating constraints, including multiple pendula [3], and even fluids [4], e.g.,
molasses stabilized in a vibrating inverted cup [4]. On the formal level, stabilization is explained by aver-
aging theory (normal form). It has been shown recently [5] that in a large class of vibrating systems any
equilibrium of the unforced system becomes stable under vibrational forcing.

We describe a new geometrical explanation of the stabilization effect. This explanation shows a perhaps
unexpected relationship between the above mentioned stabilization phenomena on the one hand and the
temperature-induced deformations of materials on the other.
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