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Recent interest in thermoelasticity of vibrating structures is motivated by the unavoidable fact that ther-
moelastic damping remains after all other sources of dissipation are removed,e.g. mounting losses, or
crystal imperfection. Thus, carefully controlled experiments on silicon MEMS oscillators [1] have demon-
strated that the dominant loss mechanism is thermoelastic (TE). Further reduction in TE damping of MEMS
resonators, with applications to next generation RF devices, requires understanding this limiting effect. The
talk reviews recent theoretical developments starting from a general procedure for calculating thermoelastic
damping in structures [2]. The main idea is to take advantage of the fact that coupling between elastic and
thermal fields is weak, and consequently TE damping can be found the purely elastic lossless solution by
regular perturbation.

The talk emphasizes new results for TE damping in flexural vibration of thin structures. The procedure
generalizes the original Zener [3] theory for beams, though for thin platesituation is more interesting by
virtue of the two dimensional nature which introduces the possibility of flexurein two directions, coupling
the kinematics and the thermal diffusion. The latter is due to the alternating compression and extension on
opposite faces of the thin structure, causing the instantaneous or isentropic bending stiffness of the plate to
relax to its isothermal value. It can be shown that the lateral (in-plane) diffusion of heat is negligible. The
net effect for thin plates in flexure is to modify the equation relating bending momentM and curvatureκ to
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thermal expansion. The scalar relaxation functiong(t) is the central property governing TE damping in
thin plates and it will be discussed in detail, with comparisons to prior theories, e.g. Chadwick’s exact but
overly complicated model [4], Simmond’s correct but simplified equation [5],and others [6], but none as
concise as the above equation indicates. In short, the relaxation function replaces the coupled equations
of thermoelasticity and flexural vibration by an equivalentviscoelastic thin plate theory. The boundary
conditions associated with the viscoelastic model are important. For example, thedamping of a plate with
fixed edges is found by simply replacing the wave number with the complex-valued one that follows from the
above moment equation. If not all edges are clamped, then the boundary conditions play an important role.
For instance, the limiting case of Zener’s beam is recovered but only with theproper edge conditions and
the resultant implications for damping. Refinements to the classical TE model will be discussed, including
quantum mechanical limitations on phonon effects in very thin plates.
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