3D DIGITAL MICROSTRUCTURES FOR MODELING POLYCRYSTALLINE SOLIDS

A.D. Rollett, D. Saylor[†], J. Fridy[~], A. Brahme, S. Lee, S. Sintay, R. Campman, A. Ingraffea^{*}, P. Wawrzynek^{*}, G. Heber^{*}, M. Veilleux^{*}, A. Maniatty⁺, C. Cornwell[^], D. Nave[#]

Department of Materials	† Food & Drug	~ Alcoa Technical Center, PA
Science & Engineering,	Administration, CDRH-	15069
Carnegie Mellon Univ., 5000	OSEL-DCMS, M/S HFZ-150,	
Forbes Av., Pittsburgh, PA	12725 Twinbrook Pkwy.,	
15213	Rockville MD 20850	
Email:rollett@andrew.cmu.edu		
* Cornell Theory Center,	+ Department of Mechanical,	#Pittsburgh Supercomputer
Cornell University, Ithaca, NY	Aerospace, and Nuclear	Center, 4400 Fifth Av.,
14853	Engineering, Rensselaer	Pittsburgh, PA 15213
	Polytechnic Institute, 110 8th	
	Street, Troy, NY 12180-3590	

A set of tools is described for creating digital three-dimensional microstructures and transforming them into finite element meshes for computational solid mechanics. The approach is based on statistical information from experimental measurements using automated electron back-scatter diffraction on orthogonal cross-sections. The microstructures currently allow grain shape, texture and grain boundary character to be matched to the measurements in a single-phase material. Grain shapes are abstracted in terms of distributions of either ellipsoids in 3D or ellipses in 2D sections. Grain orientation and grain boundary misorientation textures are quantified with distributions in a homochoric space. Simulated annealing is used to match the digital microstructures to the experimental information. The discretization of the microstructure can be realized by either a Voronoi tessellation or on a regular grid (voxels on a simple cubic lattice). Extensions of the method are described that generate finite element meshes based on either the tessellations or the regular grid. The resulting 3D digital microstructures are useful for a wide variety of applications. Examples are given for generating models of commercial aluminum alloys and two-phase materials. Applications of the approach range from fatigue crack initiation to the mechanical properties of foams.

Key words: digital microstructures, statistical reconstruction, crystallographic texture