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This paper presents an ongoing development and a validation of a henmittiodology proposed by the
first author and her co-authors for designing multilayer feedforwatdal networks in modeling nonlinear
restoring forces [1-4]. The applications of this work are extensivkiadude identification of nonlinear
dynamic systems and neural network-based damage detection.

It is well known that a foolproof way to determine a neural network archire for training has not
yet been established. However, in function approximation, a good desagrbe achieved by examining
the dominant features of the target function. In this and previous stutiesuthors do not presume to
provide a universal method to approximate any arbitrary function, rakieefocus is given to modeling
nonlinear hysteretic restoring forces, a significant domain functioroappation problem. The governing
physics of the target and the strength of the sigmoidal basis function pieter to determine both a neural
network architecture (e.g., the number of hidden nodes) as well as the wndiigihts and biases for those
nodes. These efforts lead to a methodology of constructing neural rietpmtotypes” for the training
initialization [1-4].

With the use of illuminating mathematical insights as well as a large number of traixemgpes, this
study demonstrates the usefulness and versatility of the proposed pestigpd initialization methodol-
ogy. Prototypes (with compact nhumerical nomenclature) which can betaseddel various nonlinear
functions commonly seen in engineering mechanics are provided. Commmaasmmade between the pro-
posed methodology and the widely used Nguyen-Widrow initialization to denadedtre robustness and
efficiency of the proposed scheme for the specified applications. Rutukeis also identified.
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