CRITICAL PRESSURE OF A LOBED BALLOON

M. E. Pagitz* and S. Pellegrino ${ }^{\dagger}$
* Department of Engineering \dagger Department of Engineering
University of Cambridge University of Cambridge
Cambridge CB2 1PZ, UK Cambridge CB2 1PZ, UK
pellegrino@eng.cam.ac.uk

Buckling is normally associated with structures that carry loads in compression, and it is generally assumed that tension structures cannot buckle. This paper is concerned with a particular type of tension structure that is prone to buckling, namely a lobed balloon consisting of many stiff tendons that constrain a thin, highly curved plastic surface. Between the tendons, the surface bulges out and it is expected that the balloon will take up a symmetric shape, with n identical lobes of large transverse curvature, Figure 1; this type of balloon design is known as "pumpkin design". In practice, non-symmetric shapes were first observed by Nott [1], in an actual balloon and it has been recently shown that the symmetric shape becomes unstable at a certain pressure.

Figure 1: Perspective view of 48 lobe balloon showing the primary load-carrying mode

Here we present a computational study of this buckling problem. We begin by introducing a closed form solution of symmetry transformation matrices, Pagitz [2]. These matrices are used to set up the tangent stiffness matrix of the balloon in block diagonal form which makes a classical stability analysis with varying n, based on the computation of the eigenvalues of the tangent stiffness matrix, possible without using parallel computers.

A key result from our stability analysis is that the buckling pressure versus n can be expressed in terms of a power law

$$
\begin{equation*}
p \propto n^{-x} \tag{1}
\end{equation*}
$$

where p is the buckling pressure, n the number of lobes and x a variable depending on the design of the lobes.

References

[1] J. Nott, "Design considerations and practical results with long duration systems for manned world flights," Advances in Space Research 33, 1667-1673, 2004.
[2] M. E. Pagitz, "Symmetry Transformation Matrices for $\mathbf{C}_{\mathbf{n v}}$ and $\mathbf{D}_{\mathbf{n h}}$ Groups," to be submitted.
Keywords: balloons, stability,symmetry

