# FULLY COUPLED DYNAMIC SOIL-STRUCTURE INTERACTION ANALYSIS USING A FINITE ELEMENT FRAMEWORK 

K. K. Muraleetharan*, N. Ravichandran*, K.D. Mish*, and L.M. Taylor ${ }^{+}$<br>* School of Civil Engineering and Environmental Science + TeraScale, LLC University of Oklahoma<br>Cedar Crest Norman, Oklahoma 73019, USA.<br>New Mexico 87008-1396, USA<br>muralee@ou.edu

A framework represents a collection of common software components for building different computer codes. The basic premise behind the use of a framework is the recognition of a common set of tasks that must be accomplished in writing any computer application code. These tasks can be factored out of the application codes and collected into a single set of components. The goal is to separate the physics aspects from the computer science aspects of writing a computer code and thereby making the code development more efficient. This paper presents fully coupled dynamic soil-structure interaction analyses performed using a framework-based finite element computer code Tera_Dysac [1,2]. Tera_Dysac solves the coupled differential equations governing the behavior of the soil skeleton, pore water, and the structural elements using the TeraScale framework [3]. Following a brief description of the theory and the framework, predictions made by Tera_Dysac are presented and compared to centrifuge model test results.

## References

[1] K.K. Muraleetharan, N. Ravichandran, and L.M. Taylor, "Tera_Dysac: TeraScale dynamic soil analysis code," Computer Code, School of Civil Engineering and Environmental Science, University of Oklahoma, Norman, Oklahoma, October, 2003.
[2] N. Ravichandran, "A framework-based finite element approach for solving large deformation problems in multiphase porous media," Ph.D. Dissertation, School of Civil Engineering and Environmental Science, University of Oklahoma, Norman, 2005.
[3] TeraScale, LLC, "The TeraScale Framework," Version 1.0, Cedar Crest, New Mexico, 2001.

Keywords: soil-structure interaction

