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Recent advances in microelectronics, thin films, MEMS and nanotechnology have 

resulted in problems on a length scale which are too small to be modeled by conventional 
continuum mechanics and too large, computationally, to be described by accurate fine 
scale models. This has rendered multiscale modeling and simulations very important, 
which has been one of the fastest growing research areas in the past decade. 
 

Multiscale modeling addresses a wide range of problems and takes a variety of 
mathematical forms. This method finds applications in modeling atomistic-continuum 
interfaces, granular materials, metallic foams and dislocation plasticity, to name a few. 
The simplest form of multiscale modeling involves models at two length scales viz. the 
fine scale and the coarse length scale, the coarse length scale usually being the effective 
continuum. 
 

The primary question that arises is defining the coarse-scale variables in terms of 
the fine-scale ones such that it preserves the relevant physics of the fine-scale theory. The 
practical answer is provided by using appropriate boundary conditions in the small scale 
simulations. Solution techniques thus far have utilized periodic boundary conditions 
which have qualitative defects such as preventing strain localization and introducing 
spurious components with wavelength equal to the cell size in the solution fields. These 
defects are overcome by minimal boundary conditions which are imposed on a fine-scale 
computational cell as a constant derived from the coarse-scale model (Mesarovic, S. and 
Padbidri, J. 2005, Phil. Mag., 85(1), 65-78). These boundary conditions are termed 
minimal since they impose nothing but the desired constraint. These boundary conditions 
are based on the definition of the coarse strain as the volume average of the microscopic 
strain field (Bishop, J.F.W. & Hill, R, 1951, Phil. Mag., 42, 414-427). They have an 
integral form and yield a unique solution upon satisfying certain mathematical conditions. 
 

The minimal boundary conditions are directly applicable to networks with local 
interactions. Metallic foams (in 2D) can be represented by a non-simplex network with 
beams as the basic elements at a fine-scale. The coarse-scale model is a special case of 
porous materials. Granular materials and concentrated suspensions of rigid particles in a 
viscous fluid can be represented by a discrete network approximation (Delaunay network 
of simplexes). The model includes a contact law, defined on the interactions between the 
particles. The minimal boundary conditions are applicable using the formulation of the 
discrete element method. 


