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The robust tendency of small particles from nanometers to centimeters to chain in all kinds of motions must be 

associated with a powerful and local feature of particle-fluid interactions. We argue that the chaining of bubbles, 

drops and solid spheres (figure 1) is a 

consequence of the same dynamics that 

controls the orientation of long bodies 

moving relative to the stream, across the 

stream in Newtonian fluids and along the 

stream in viscoelastic fluids. This dynamics is 

mainly controlled by a reversal of the normal 

stress at a point of stagnation 

A point of stagnation on a stationary 

body in potential flow is a point at the end of 

a dividing streamline at which the velocity 

vanishes. In a viscous fluid all the points on 

the boundary of a body have a zero velocity 

but the dividing streamline can be found and 

it marks the place of zero stress near which 

the velocity is small. 

Wang and Joseph (2004) have presented an analysis of potential flow of a second order fluid over an ellipse and 

elliptical bubble using classical irrotational airfoil theory framed in terms of functions of a complex variable. The 

effect of the viscoelastic terms is opposite to that of inertia; the normal stress at a point of stagnation can change 

from compression to tension. This causes long bodies to turn into the stream and causes spherical bodies to chain. 

The viscoelastic stresses extend the rear end of a rising bubble, tending to the cusped trailing edge observed in 

experiments. The same stresses cause small gas bubbles to chain in viscoelastic fluids and disperse in Newtonian 

fluids. 

The stagnation points of a sphere in a uniform stream are [r = a, θ = 0 or π] where, respectively 
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The viscous contribution gives rise to compression -6ηU/a at the front stagnation point and to tension 6ηU/a at 

the rear. The sign of the stress due to inertia and viscoelasticity is the same at [θ = 0, π] and it is a tension when 

9(2α2 - α1)  > ρa
2
. The quantity 2α2 - α1 is strongly positive; for example, for the liquid M1 (Hu et al. 1990), α2  = 

5.39 and α1 = -3 (g/cm). Hence, if a
2
 is not too large the stress at the stagnation points is a tension, reversing the 

compression due to inertia. This tension has a profound effect on the microstructure and is an ingredient in the glue 

that holds chained spheres together and turn long bodies into the stream. These viscoelastic effects are stronger for 

smaller particles (proportional to 1/a
2
) than for larger ones. The chains of small particles exhibited here may be a 

realization of this prediction. How small is really small? Do nanoparticles chain? 
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Figure 1. Flow induced microstructure. Spheres line up in the 

direction of flow (a) Extensional flow, (60-70 µm spheres) (b) 

fluidization (3 cm spheres) and (c) sedimentation (3 cm spheres) 

in a 1% aqueous PEO solution. 

  

 


