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Abstract

Compound aftershock sequences are of special in-
terest because the decay of secondary aftershocks
contains information about the mechanisms that gen-
erate all earthquakes. If earthquakes nucleate as a
result of accelerating slip, growing cracks, or any
similar failure process, then the rate of decay of
aftershock sequences is a direct result of that fail-
ure process, as influenced by local material prop-
erties. The aftershocks are then triggered by the
mainshock, moved closer to failure and concentrated
on the curved part of loading curve, occurring ear-
lier than they would have if the mainshock had not
occurred. Secondary aftershocks, which are them-
selves triggered by an aftershock, are promoted to-
wards failure twice, and consequently should decay
differently than primary aftershocks do. The theory
behind this concept is developed, explored with nu-
merical models, and tested with a study of the after-
shocks of the Hector Mine earthquake of 1999. Be-
cause the Hector Mine mainshock occurred during
the aftershock sequence of the Landers 1992 earth-
quake, failure time re-mapping predicts a slightly
different temporal distribution for the Hector Mine
aftershocks than they would have had without the in-
fluence of the Landers mainshock. This prediction is
testable. In this work three different types of after-
shock decay relations are applied to 94 spatial sub-
sets of aftershocks, and evaluated with two different

statistical measures. Re-mapped aftershock decay
models were superior for almost all the cases stud-
ied, regardless of the type of aftershock decay model
used or the statistical measure. These results confirm
previous work suggesting that the majority of after-
shocks are not caused by their mainshock, only pro-
moted toward failure, and most earthquakes nucleate
through a failure process such as velocity dependent
friction or stress corrosion cracking.

I ntroduction

One of the most interesting seismic phenomena is
the occurrence of aftershocks. Large aftershocks
trigger their own aftershock sequences, aftershocks
here called secondary aftershocks, in order to distin-
guish them from the primary aftershocks triggered
by the mainshock. An aftershock sequence is de-
scribed as being compound when there is an obvious
secondary aftershock sequence. The phenomenon of
secondary aftershock sequences following large af-
tershocks has been recognized for a long time (Utsu,
1961) but only more recently have the aftershocks
of smaller magnitude aftershocks been recognized.
Lomnitz and Hax (1966) found no small scale clus-
tering during aftershock sequences because of limi-
tations of their data and analysis techniques. More
recent studies have found significant clustering (e.g.
Matcharashvili et al. 2000). Felzer et al. (2001) have
constructed models that suggest most aftershocks are



secondary, in the sense that their most immediate
trigger is another aftershock. Sornette and Sornette
(1999) have shown that when secondary sequences
generated by small magnitude aftershocks have an
Omori decay, the decay of all the events together
does not follow a simple Omori relationship, even
though the sequence is not obviously compound.
That result suggests that secondary aftershocks may
not decay in the same way as primary aftershocks.
Failure time re-mapping, the main topic of this pa-
per, is a phenomenon which naturally produces sec-
ondary aftershocks that decay differently from pri-
mary aftershocks.

Currently there are several quite viable explana-
tions for aftershock generation and decay, theories
which ought to apply equally well to the failure pro-
cess for all earthquakes. Our present difficulty is to
choose among the theories, and select those which
are valid for real seismogenic faults. Observations of
aftershocks and in particular compound aftershock
sequences can help distinguish between competing
models of the earthquake failure process, which is
the main reason they are interesting. All viable mod-
els of aftershock generation and decay involve some
physical process which gives the aftershocks their
temporal distribution. Some models imply that pri-
mary aftershocks are triggered through a process of
failure time re-mapping, which means that their orig-
inal times to failure as part of the background seis-
micity were changed by the mainshock, most likely
as a result of the stress changes accompanying the
mainshock (Stein, 1999, Belardinelli et al. 1999,
Toda et al. 1998). The occurrence times of the sec-
ondary aftershocks would then be a result of doubly
re-mapped failure times, and decay differently than
the primary aftershocks. Other aftershock models
(Hill et al. 1995, Lomnitz 1996, Gomberg 2001) do
not involve re-mapping of occurrence times. The af-
tershocks could be ”new” events, not any accelerated
version of the background seismicity, in which case

we would expect the secondary aftershocks to decay
much like the primary sequences do.

The implications of failure time re-mapping will
be approached from several different directions in
the work presented here. First the concept will be de-
scribed and relevant equations will be developed and
specialized for rate and state dependent friction mod-
els. Second, results of numerical simulations will be
presented and modeled. Finally the new modeling
techniques will be applied to aftershocks of the 1999
Hector Mine earthquake as influenced by the 1992
Landers stress step. Statistical tests are used to quan-
tify how well the theory corresponds to observations.

Generalizing the Failure Process

Conceptual Description

When aftershocks occur through failure time re-
mapping, the mainshock moves them forward in
time, it does not generate new events. Essentially
this means that there is some original temporal dis-
tribution of background seismicity that would have
happened without the mainshock, and this distribu-
tion is altered as a result of the mainshock. The phys-
ical reasons why the failure times are changed vary
from model to model, but the models all trigger af-
tershocks by altering the original distribution of fail-
ure times. The central point of this paper is that af-
tershocks triggered through failure time remapping
decay in a way that reflects the original distribu-
tion of failure times, in addition to the remapping
process. The physical process that promotes failure
should not be influenced by the original distribution
of failure times, but this means that the aftershocks
it triggers will not always have the same temporal
distribution. The most obvious real world example
of the way the initial distribution of failure times
changes the resulting aftershock distribution is the
case of compound aftershock sequences. The sec-



ondary aftershocks in a compound sequence may be
re-mapped in exactly the same way the primary after-
shocks are, in the sense that a change in failure time
for a given initial failure time and a given perturba-
tion is the same. The difference is that the “initial”
failure times of the secondary aftershocks are not
the same as the initial failure times for the primary
aftershocks. The distribution of failure times is al-
tered twice, and therefore the doubly re-mapped sec-
ondary aftershocks decay differently than the singly
re-mapped primary aftershocks do.

Failure Time Re-mapping Equations

The simplest way to represent failure time remap-
ping is to write the remapping function R, which
converts failure times of background earthquakes, ¢y,
to failure times of primary aftershocks ,,

tp = R(ty)- 1)

In this expression the mainshock occurs at ¢ = 0,
so R is defined only for positive values of its argu-
ment. Since R is only a function of the timing of
the events, it can equally well be applied to the times
of primary aftershocks, generating secondary after-
shocks at times ¢ following a secondary mainshock
at to,

ts — 1o = R(tp - t2)a (2)

which is very similar to the original expression,
except for a time shift, starting the remapping at time
to. Combining the last two equations,

ts = R[R(tp) — to] + 12, (3)

we see how an event that would originally have
occurred at t; is doubly remapped, becoming a sec-
ondary aftershock that occurs at ¢.

In order to derive the observational consequences
of the remapping, it is helpful to develop expres-
sions for the distributions of the aftershock times we
expect, assuming an initially uniform population of
failure times ¢,, producing a steady rate b of back-
ground events per unit time. Symbolically, this as-
sumption can be written:

t 21, (4)

where U represents a uniform distribution. If we
then apply the remapping function to both distribu-
tions,

R(ty) < t, £ R(U) 5)

we have an expression for the distribution of pri-
mary aftershock times. This expression helps us to
visualize the remapping function R, whose inverse is
the cumulative event count curve, suitably scaled by
the background rate. The distributions can be con-
verted to cumulative event count curves N (t), which
are often used to quantify the decay of aftershocks.
When we say that the background seismicity is uni-
formly distributed, we mean the the probability of an
event occurring before some time T' is

(tb - tmin)
b(tma.x - tmin) ’
But tmin is generally zero, the time of the mainshock,
the origin of the timescale is chosen there. When the
background events are remapped to aftershock times
tp, the probability of an aftershock occurring before
T is modified by the remapping function R:

Pr(tb < T) = (6)

R '(ty)
btmax ’
which can be converted into a cumulative event

count NV through a change in units, multiplying by
btmax;

Pr(t, <T) = ©)



N =bR™!(tp). (8)

If we rearrange this expression and recognize that
N = bty,

©)

we recover the definition of the remapping function
R, showing the consistency of this derivation.

Failure time remapping can occur as a result of
several possible mechanisms, with velocity depen-
dent friction being one. In this case, the slip velocity
V of a fault patch increases toward failure, following
a failure curve f, which is a function of time,

R(N/b) =y,

f(t) =log(V). (10)

The failure curve f is responsible for generating
aftershocks because it is curved on a semi-log plot
(Figure 1), increasing in slope just before failure.
Stress increases from the mainshock Ao produce
increases in slip velocity that result in earlier failure
times ¢, and concentrate the events on the curved
part of the line, just before failure,

f(tp) = f(tb) + AAUla

where Ao is the change in failure stress, incorpo-
rating both increases in shear stress and decreases in
normal stress resolved onto the faults upon which the
aftershocks occur, (e.g. Stein, 1999). Ao can also
be negative, in which case it results in a seismicity
decrease. Far from failure f has a constant slope,
which means that the seismicity rate long after the
mainshock is not changed by the remapping process.
The function f can be related to the remapping func-
tion R by solving for primary aftershock times ¢,,

(11)

ty = [7H(f(to) + Alan),
and then substituting for the lefthand side,

(12)
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Figure 1: This figure illustrates the process of failure
time remapping for a loading curve derived from Di-
eterich seismicity theory. The initial distribution of
earthquake failure times is represented by the evenly
spaced arrangement of black upward pointing arrows
along the loading curve. The arrows all have the
same length, because the response to the stress step
they represent produces the same increment of log
slip velocity on each nucleation site (all sites expe-
rience the same stress increment). The change in
failure time that results is illustrated by horizontal
arrows, which are not all the same length, because
the time to failure represented by the new slip ve-
locity is a function of the local slope of the loading
curve. The bend in the loading curve concentrates
the final slip velocities, (represented by vertical grey
line segments) and produces the primary aftershock
sequence.



R(ty) = £~ (f(ts) + AAo). (13)

In order to see how secondary aftershocks occur-

ring on a fault with velocity dependent friction are

distributed in time, the remapping can be applied to
the primary aftershocks,

ts =to+ [T (f(tp) + ADoy — 1),  (14)
and the expression rearranged,
flts —t2) = f(tp) + ADog — 13, (15)

making it easier to substitute in the relationship
between primary aftershocks and background seis-
micity:

flts —t2) = f(ts) + AAoy + AAoy — tg, (16)

which makes it clear that the effect of an immedi-
ate secondary mainshock is to change the number of
aftershocks without altering their temporal distribu-
tion. Only when ¢4 is nonzero is there a difference
between the decay relations that apply to secondary
aftershocks as contrasted with primary aftershocks.
Far from failure the f function produces a linear in-
crease of log V with ¢, so all events are moved toward
or away failure by the same amount, and there is no
change in seismicity rate. Even though the timing
of events far from failure has been altered, their rate
is unchanged, and so we do not ordinarily call these
events aftershocks. The population of slip velocities
only retains evidence of a mainshock as long as the
seismicity rate is altered, which is a length of time
equal to the width of the curved portion of the fail-
ure curve. Secondary aftershocks are moved twice
along the failure curve, but they will not decay dif-
ferently than primary aftershocks unless both times
the remapping involved a change in rate of seismic-
ity, movement toward or away from the curved part
of the failure curve.

Aftershock models

The three main aftershock models used in this work
were modified Omori, Dieterich, and stretched ex-
ponential. The modified Omori relation (Utsu 1961)
with an additional background term (Gross and
Kisslinger 1994) is

K
(t+c)p

n(t) = +b.

(17)

Variations on modified Omori include Modified
Omori with adjustable background (MOMb), Mod-
ified Omori with fixed background (MOMB), and
Modified Omori with no free parameters (MOMF).
The fixed background in MOMB models is com-
puted from the observed rate of background events
before the first mainshock. The fixed modified
Omori model uses that same fixed background, and
gets the ¢ and p-values from a fit to the entire data
set.

The Dieterich (1994) model may be written,

b
[exp (_AAD”UF) — 1] exp ;—: +1

n(t) =

,  (18)

which was derived using equations developed to de-
scribe laboratory observations of rate and state de-
pendent friction.

The stretched exponential,

1 /7t\¢ t\?
n() = o ©)7 () exvl= (1) 145 @9
t \to to
was first proposed by Carl Kisslinger (1993), and is
usually fit with a background term b (STREXPD).

In equations 17-19 n(t) is the number of events
occurring per unit time, at time ¢. The K parameter
in the original modified Omori function and N*(0)
in the stretched exponential are related to the to-
tal number of aftershocks in the sequence, and can
be computed directly from the observed number of



events and the other parameters. In the Dieterich
aftershock decay function (6) the number of after-
shocks is proportional to the background rate b and
increases with increasing failure stress step Ao, as
scaled by the velocity effect constant Ap and the
normal stress o. The only other parameter in the Di-
eterich decay relation is t,, the duration of the after-
shock sequence. The Dieterich decay relation resem-
bles a modified Omori sequence with decay power
p = 1 at times less than ¢, but greater than time it
starts to decay. The time the Dieterich relation starts
decaying, analogous to ¢ in the modified Omori rela-
tion, decreases with increasing stress step Ao p. For
the stretched exponential, ¢y controls the transition
from power law decay (with a power ¢) and expo-
nential decay.

Aftershock decay modeling

A method for fitting the Dieterich decay relation to
the temporal decay of the aftershocks is needed in
order to select the best-fitting models and test fail-
ure time re-mapping. A practical technique for fit-
ting and comparing aftershock models having a va-
riety of functional forms has been developed (Gross,
1996; Gross and Kisslinger, 1994; Kisslinger, 1993;
Ogata 1983). This technique finds the best-fitting
model by minimizing the Akaike information crite-
rion (AIC), which also minimizes the difference be-
tween the best fitting model and the unknown true
model.

For an aftershock model having n, free parame-
ters and a modeled rate n(t;), as a function of the
time of the ith aftershock, the AIC is

N
AIC = 2N — 2 "log(n(t;)) + 2ny,
=1

(20)

where N is the total number of aftershocks ob-
served. By minimizing the AIC over the possible

models, we maximize the model rates n at the times
of events ¢;. The three models fit in this work (equa-
tions (17), (18) and (19)) have n, = 3 free param-
eters, K, c and p for the Modified Omori model, ¢,
Ny and and ¢, for the stretched exponential and ¢,
b and —Aop/Apo for the Dieterich model. In or-
der to include background activity an additional pa-
rameter b is usually employed in fitting the Modified
Omori and stretched exponential. The minimization
is carried out by using the technique described by
Gross (1996). The lowest minimum from a series
of 20 downhill simplex runs is selected, with each
run started from a different, randomly selected set of
initial parameters. The last 10 runs are started pro-
gressively closer to the best value found up to that
point.

Modeling Compound Sequences

To fit models to compound aftershock sequences
with re-mapped failure times it is only necessary to
apply a conventional aftershock model twice. The
primary mainshock and its aftershocks are fit using
some standard technique which permits the expected
cumulative number of events at the time of each af-
tershock to be evaluated. Then the model is extrap-
olated to the times of all the secondary aftershocks.
The cumulative number of events in a model of an
aftershock sequence may be treated as a time, called
Frequency Linearized Time (Ogata and Shimazaki,

1984)
T

n(t)dt.
=0

When this quantity is graphed as a function of the
observed number of events, the decay of the primary
aftershock sequence is gone, and the secondary se-
quence appears as if it occurred in isolation. This is
illustrated in figures 2 and 3.

The transformation of the time axis which occurs
when we plot frequency linearized time is the same

FLT = (21)
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Figure 2: These curves show the cumulative number
of events that occurred within a 64 km box near Lan-
ders and Hector Mine aftershock zones. The dashed
curve is a fit to the Landers aftershocks extrapolated
through the Hector sequence. When the time scale
is transformed to Frequency Linearized Time (bot-
tom panel) the first aftershock sequence (Landers) is
flattened away, and appears as if it were background
seismicity. This also changes the shape of the sec-
ondary sequence (Hector Mine), but it is difficult to
see the new shape because the new time scale is so
compressed.

transformation of failure time that the secondary af-
tershocks undergo as a result of the primary main-
shock. So the secondary sequence may be fit just
as if it were primary, using the same techniques de-
veloped for simple aftershock sequences. Transfor-
mation to frequency linearized time is the model-
ing technique used to fit secondary re-mapped after-
shocks in this work. In order to evaluate the good-
ness of fit using the AIC or likelihood, it is necessary
to transform back to physical time from frequency
linearized time.
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Figure 3: This pair of figures shows the same data
and the same Modified Omori model as in the pre-
vious figure, but new constraints have been placed
on the time scale, so the change in shape of the sec-
ondary sequence (Hector Mine) is now visible. The
dashed curve in this case is a Modified Omori fit
to the Hector aftershocks. Transformation to Fre-
quency Linearized Time improves the fit.

Numerical Simulations

In order to verify the failure time re-mapping process
and the effect it has upon secondary aftershocks, |
constructed a simple numerical model of earthquake
nucleation on a population of faults that obey rate
and state dependent friction. This model marches
forward in time at a steady rate, applying a given
stress history to all of the faults. The faults have state
variables 6; and velocities V/, which are updated in
sequence at each time step given the current shear
stress 7 and normal stress o,



T=o0luo +Aln(V/V*) + BIn(6/6%)] (22)
af
do=[1/V —0/D.Vdt— [B—]da, (23)
ag
but there is no stress transfer between faults. Al-

though these equations can be written for multiple
state variables B;, «;, 6; and D.;, the cases pre-
sented here were computed with a single set of state
variables. When the slip velocity of a fault reaches
1000V* = 10 cm/day it is declared to have ruptured,
and its velocity is reset to 1 x 1019V*. At failure
the stress drop on the fault is set equal to the current
stress value, reflecting an assumption of zero resid-
ual stress. This permits the residual stress to cycle
upward again as the velocity gradually increases to
the failure threshold. The number of faults that rup-
ture in each time step of the model is output, and
may be compared with small magnitude natural seis-
mic activity. The model is not meant to represent
the full complexity of real fault nucleation, and ne-
glects momentum as well as stress transfer between
the fault patches, but it includes variations in the
frictional properties A, the direct velocity effect, B
which weights the effect of the state variables, and
D, the critical slip distance. There are also varia-
tions in the initial state variables and in the stresses,
but the particular values chosen are not important.
The model is run through many cycles of failure at a
steady rate of loading. The velocities and state vari-
ables reach an equilibrium, simulating the conditions
which generate a steady rate of background seismic-
ity before the stress step from a mainshock perturbs
the state variables to generate the aftershocks.

In order to test the numerical model, I first see if
it can reproduce the theoretical results derived for a
population of faults having friction that obeys rate
and state dependent friction. Dieterich (1994) de-
veloped these equations for the case of a single step
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Figure 4: This synthetic aftershock sequence was
generated using a numerical model which had been
allowed to equilibrate for a long time without a main-
shock beforehand. The sequence is best fit with a
Dieterich aftershock model.

in stress. Figure 4 shows a synthetic aftershock
sequence generated by a model run with 100,000
faults, uo = 0.5, just a single state variable, with B
uniformly distributed from .008 to .016, and D, uni-
formly distributed from .0625 to .125 m. The back-
ground loading was steady at a rate of 100 Pa/day,
and lasted for 103 days or 273 years before a stress
step of 4 x 10° Pa was applied to generate after-
shocks.

As Figure 4 shows, we find that the numerical
model produces aftershock sequences that decay as
predicted by Dieterich seismicity theory. Several
other aftershock decay models are also plotted on
the graph, and they all match the data quite well.
The Dieterich model fits best because it has the best
Akaike Information Criterion (AAIC = 0.5) when
compared to the most successful other model, Mod-
ified Omori with background. This confirms that
the model adequately represents Dieterich seismic-
ity theory.



The model was also tested by generating a se-
quence with known parameters, and seeing if they
can be recovered from the best-fitting parameter val-
ues. In this case
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Figure 5. This synthetic secondary sequence is
shown without failure time remapping (top panel)
and with failure time remapping (bottom panel). The
remapping improves the fit of aftershock decay mod-
els, especially the Dieterich decay relation, which
applies to these data because they were generated us-
ing Dietrich friction.

(24)
t, should be 1000 days. Correcting for the inaccu-
racy of the background rate of seismicity, b estimated
from the aftershock sequence,:
1.3 d
313 days g4

(2 events/day) % day
= 928 days,

te = Apo /o,

events

ty = (25)

which is gratifyingly close to the theoretically ex-
pected value of 1000 days.

The more complicated case of two stress steps ap-
plied to the numerical model produces a realistic-
looking compound sequence. As Dieterich (1994)
explains, the sequences still have the characteris-
tic 1/¢ decay at intermediate times, but there are
some interesting effects at shorter times not dis-
cussed there. The secondary sequence decays differ-
ently at first because of the doubly-remapped failure
times the early aftershocks have. Secondary after-
shocks resulting from a sufficiently large secondary
stress step will not show this effect because all the re-
maining primary aftershocks occur at the same time
as the secondary mainshock.

Fitting the secondary aftershocks with aftershock
decay models without re-mapping results in consid-
erable misfit (top panel of Figure 5) but when the pri-
mary aftershock sequence is reduced to a straight line
by plotting cumulative number versus frequency lin-
earized time (equation 9), the secondary aftershocks
are better modeled. In particular, the Dieterich af-
tershock model is improved, and it provides the best
fit (AAIC = 27) when compared with the Modi-
fied Omori model with background, the second-best
model.

Application to Hector Mine

There are innumerable tests of the failure time re-
mapping concept we could construct using real data,
but the best ones involve large numbers of after-
shocks, so that the results are clear, and well defined
mainshock sources, so that the calculation of stress
transfer is reasonably well constrained. The 1999
Hector Mine earthquake was chosen as a secondary
mainshock because it follows the well-studied 1992
Landers earthquake, occurred in a very well mon-
itored part of the world, and the aftershock zones



overlap.

The catalog of seismicity used in this work was
compiled by the Caltech USGS southern California
seismic network, beginning in January 1981 and end-
ing in December 2000. The minimum magnitude
used was My, > 2.0 but no spatial cut was applied.
The catalog was divided into a spatial grid of boxes
(Figure 6) whose sizes reflect the level of seismic
activity. The pattern of boxes shown in figure 6
was created with an automatic clustering algorithm
that divides seismicity into compact subsets accord-
ing to activity level. The algorithm starts with a 1
km grid of possible clusters, and compares the num-
ber of events in each cube with a minimum count,
in this case 300 events. Any cubes that meet this
threshold are saved, and their events excluded from
larger scale clusters. Then the resolution of the grid
is halved, defining a regular network of 2km cubes.
The 2km seismicity counts are compared with the
same threshold, qualifying data saved, and aggre-
gated again. The process ends when the maximum
permitted cluster size is reached, in this case 64 km,
and all remaining events are assigned to cubes which
may not meet the threshold. The algorithm groups
the data by location so that quantities which vary
with location can be studied in relatively homoge-
neous subsets. Dividing the data up by location also
provides a relatively large number of cases to test,
and segregates influences that make the tests depen-
dent upon one another as much as possible.

In order to test the failure time re-mapping hypoth-
esis | fit a variety of aftershock decay models to the
subsets just discussed, using two different statistical
measures to define the quality of the fit. The first
measure is the Kolmogorov-Smirnov statistic, which
is defined to be the greatest difference between the
cumulative distribution functions being compared.
The better the fit, the smaller the value, which can
range between zero and 1. The second test is an
evaluation of log-likelihood, the same method used

Table 2: Log Likelihoods of Hector Aftershocks

Model | np sequential remapped AL
strexpb | 4 -275 -245 +30
momb | 4 -260 -237 +23
momB 3 -264 -255 +9
dieterich | 3 -269 -253 +16
momF | O -319 -322 -3

These average log likelihoods are less negative when the
probability of the observed data is greater. Therefore the
best-fitting models are those with the least negative
log-likelihoods, and the fewest parameters, np. Each
parameter should improve the fit by a factor of 2 x e,
which means two units should be added to the momB
and dieterich log likelihoods when comparing with the
stretched exponential or momb log likelihoods. The
best-fitting models in this table are the modified Omori
and stretched exponential decays, both with failure time
re-mapping.

to evaluate the goodness of fit when modeling indi-
vidual aftershock sequences. In this application the
cumulative distribution functions are actually a cu-
mulative event count as a function of time, normal-
ized to the total number of events. In each case the
primary and secondary sequences were fit indepen-
dently, using a maximum likelihood technique, and
then the compound sequence was reassembled and
evaluated using the KS statistic, in Table 1, or the
maximum likelihood statistic, as in Table 2. Only se-
quences with at least 10 secondary aftershocks were
used in the computation of the K-S shown in Table
1.

| fit the re-mapped secondary aftershocks by ex-
trapolating the best fitting primary sequence and
transforming to Frequency Linearized time as dis-
cussed in the section on modeling compound se-
quences. The re-mapped fits were compared to fits
made without any remapping. This comparison was
made for 94 subsets, eliminating those which had
fewer than 50 events following the Landers main-
shock.
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fits. They are defined in a hierarchy of sizes, from 64 km to 1 km, with their range of depths equal to
their horizontal extent. When they overlap the smaller sizes take precedence over the larger, so events are

assigned to the smallest cube that encloses their hypocenter.
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Table 1: KS statistics of Hector Aftershock Fits
\ MOMb MOMB Strexpb MOMF Dieterich

13
10

13
12

Sequential
Re-mapped

A3 .20
.09 .30

A3
.10

These Kolmogorov-Smirnov statistics are a measure of misfit, with smaller values corresponding to better fits. The 5
different models were applied to subsets of Hector aftershocks with either sequential (unremapped) sequences or
re-mapped sequences taken from the decay of the Landers aftershocks for the same region. The best model is
Stretched Exponential, followed by Modified Omori and Dieterich, all including failure time re-mapping.

Discussion

The results presented here support the applicability
of failure time re-mapping to both modeled and ob-
served aftershocks. This is particularly easy to show
for the case of simulated events, because the data
sets can be made as large and uniform as desired,
and so the statistical uncertainties are minimal. With
real data there is more uncertainty about the statis-
tics, but far less uncertainty about the relevance of
the result. In the case of Hector Mine, it does appear
that most aftershocks have been generated by some
process that involves a re-mapping of failure times,
as both statistical tests show significantly better fits
when the sequences are re-mapped before being fit.
Dividing the aftershocks into spatial subsets seems
to have given the stretched exponential and Dieterich
aftershock decay relations an advantage compared to
the more usual situation when aftershocks from var-
ious locations are blended together. The blending
could easily mask the rather subtle differences be-
tween decay relations, especially when variations in
stress step are responsible for variations in the decay
relation, and stress step varies with location.

Conclusions

(1) Failure processes which generate aftershocks by
advancing the failure times of background events

12

will generate secondary aftershocks that decay dif-
ferently than the primary aftershocks do.

(2) Secondary aftershocks may be fit by trans-
forming time to frequency linearized time FLT(¢)
to remove the primary aftershock sequence.

(3) Aftershocks of the 1999 Hector Mine earth-
quake show this effect when grouped into subsets
based upon location. Remapped aftershock decay
models provide a better fit to these data.

(4) Although these results do not rule out the
generation of some "new” events in aftershock se-
quences, they suggest most events are triggered by
some mechanism that involves the acceleration of
background seismicity, such as time dependent fric-
tion or stress corrosion cracking.
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